
© 2018 JETIR March 2018, Volume 5, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1803181 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 959

Frequent Itemset Mining Algorithms: A Survey

1Abdul Rahman,2Arati Manjaramkar,

Department of Information Technology,

 SGGSIE&T, Nanded, Maharashtra, India

Abstract: Feature extraction have been commonly recognized as a dominant method to discover additional information

from huge scale database. One of the feature extraction method is general interdependence rules extraction through

grouping. This method is used to determine extra valuable information other than normal regular interdependence rules by

taking user related knowledge into consideration. Frequent Itemset Mining (FIM) play a fundamental role in

interdependence rule elements extraction, so as to serve in various feature extraction jobs. It supports to recognize

collection of elements, features, signs etc. that usually occur in our databases. Ever since its beginning, a numeral important

frequent item sets mining algorithm has been established to accelerate extraction performance. In this paper, we have

discussed different algorithms for both sequential extraction as well as parallel extraction of repeated elements. So different

algorithms to do have a variety of compromises among communication and computation, utilization of memory,

synchronization, and the consumption of problem specific knowledge.

Index Terms - Information Mining, Association Rules, Frequent Itemset Mining, Hadoop Map Reduce

1. INTRODUCTION

Extraction of hidden knowledge is a method of mining earlier unknown and possibly valuable knowledge (for

example information rule, limitations, symmetries) from databases [1]. Through information determining in databases,

relevant information, sequence of elements, or complex knowledge can be mined from important collections of

databases. This information then can be examined from variety of viewpoints. Therefore, huge databases can be

considered as ironic and consistent bases for information production and confirmation.

Extraction of knowledge and information from huge database has been identified by numerous scholars as a crucial

topic in database systems and machine learning. Several business companies have been using extraction methods as a

vital field with a chance of main revenues. The determined data can be used for data management, question processing,

decision support system, procedure controller, and numerous further areas. Scholars in various dissimilar areas,

containing database systems, information system, artificial intelligence, machine learning, and information gaining

have revealed great curiosity in feature extraction.

2. BACKGROUND

2.1 Mining Association Rules

Consider an example of auctions transaction database. It is required to determine the vital interdependences

amongst the elements such that the occurrence of few elements in an operation will indicate the occurrence of another

elements in the similar operation. A scientific prototype was suggested in [2] to discuss the issues of extracting

interdependence rules. Consider I = i1; i2; im be a collection of literal, called as elements. Let D be a collection of

operations, where every operation T is a collection of elements such as T ⊂ I. Notice that the number of elements

bought by a customer in an operation are not well thought-out, it means that every element is a twofold variable

denoting if an element was purchased. Every operation is related with an identifier, representing as TID. Consider X be a

collection of elements. An operation T is said to have X as long as X is a subset of T. An interdependence rules is an

inference of the structure such as X => Y, where X ∈ I, Y ∈ I, and X ∩ Y = Φ. The rules X => Y hold in the operation

collection D with confidence c if C% of operations in D that have X also have Y. The rules X => Y have support s in

the operation collection D if S% of operations in D have X ∪ Y.

As per [2 - 4], the difficulty of extraction of interdependence rule is disintegrated into the succeeding two stages:

1. Determine the huge elements, i.e., the collections of elements that contain operation support beyond a

predefined least support s.

2. Use of the huge elements to produce the interdependence rule for the databases.

2.2 Frequent Itemset Mining

Repeated elements extraction is an essential problem in association rule mining (ARM), sequence extraction, and

alike. Accelerating the method of frequent itemset mining (FIM) is serious and essential, since FIM feeding accounts

for a major portion of extraction time because of its high calculation and input/output (I/O) intensity. Repeated

elements extraction algorithms can be distributed into two groups namely, sequential extraction and parallel extraction.

© 2018 JETIR March 2018, Volume 5, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1803181 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 959

3. SEENTILA MINING ALGORITHMS

There are two kinds of techniques that can be used for the extraction of repeated elements. First technique is based

on producing the candidate elements. The examples of this technique include the Apriori algorithm and Direct Hashing

with Efficient Pruning (DHP) algorithm. Second technique is based on without producing the candidate elements,

which includes the FP-growth algorithm and frequent items ultrametric tree (FUIT). The following section gives a

description on each of the techniques.

3.1 Apriori Algorithm

Agrawal et al. [3] proposed a fast algorithm for mining association rules in large databases, known as Apriori

algorithm. Take an example of operation databases as shown in Figure 1. In every step, Apriori builds a candidate

collection of huge elements, sums the amount of incidents of each candidate elements, and then calculates huge

elements founded on a predefined least support. In the initial step, Apriori only searches all the operations to calculate

the amount of incidents for every element. The collection of candidate 1-elements, C1, found is presented in Figure 2.

Figure 1. A Transaction Database.

 Suppose that the least operation support needed is 2 (such as, s = 40%). The collection of huge 1-elements, L1,

consists of candidate 1-elements with the least support mandatory, can then be calculated. To determine the collection

of huge 2-elements, in sight of the point that any subclass of a huge elements essential have least support, Apriori

algorithm requires L1 * L1 to produce a candidate collection of elements C2 where * is an action for concatenation in

this situation. C2 contains of 2-elements. Then, the four operations in D are searched and the support of every candidate

elements in C2 is calculated. The second row of mid table in Figure 2 denotes the outcome from such calculating in C2.

The collection of huge 2-elements, L2, is consequently calculated which relies on the support of every candidate 2-

elements in C2.

The collection of candidate elements, C3, is produced from L2 as below. From L2, two huge 2-elements with the

similar first element, such as (BC) and (BE), are recognized first. After that, Apriori checks whether the 2-elements

(CE), which contains of their next elements, creates a huge 2-elements or not. As (CE) is a huge element by its-own, we

see that all the subclasses of (BCE) are huge and then (BCE) converts to a candidate 3-elements. There is no other

candidate 3-elements from L2. Then Apriori searches all the operations and identify the huge 3-elements L3 in Figure 2.

As close by, there is no candidate 4-elements to be created from L3, Apriori stops the procedure of determining huge

elements.

Figure 2. Candidate Set Generation in Apriori.

The Apriori Algorithm has a decent performance increased by minimizing the dimension of candidate collections.

But, in circumstances with a huge amount of repeated sequence of elements, long sequence of elements, or pretty low

least support, an Apriori-like algorithm may have the subsequent two nontrivial expenses:

1. It is expensive to support a large amount of candidate collections. For instance, if there are 104 repeated 1-

© 2018 JETIR March 2018, Volume 5, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1803181 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 959

elements, the Apriori algorithm will require generating greater than 107 length 2-candidates. Then it needs to

gather and checks their occurring regularities. Furthermore, to determine a repeated sequence of element of size

100, such as a1, . . ., a100, it needs to produce 2100 -2= 1030 candidates in overall. This is the natural cost for

candidate production, it does not matter what execution method is used.

2. It is boring to constantly search the databases and test a huge collection of candidates by sequence of element

comparing, which is particularly right for extraction of large sequence of elements.

3.2 Apriori on Hadoop MapReduce

Kovacs et al. [19] presented parallel frequent itemset mining on hadoop. Hadoop is a framework which uses the

MapReduce programming. To implement an algorithm on MapReduce the main tasks are to design two independent

maps and reduce functions for the algorithm and to convert the datasets in the structure of the form (key, value) pairs.

In MapReduce programming, all the mapper and reducer on different machines execute in parallel fashion but the final

result is obtained only after the completion of reducer. If algorithm is recursive, then we have to execute multiple phase

of map-reduce to get the final result.

Apriori algorithm is an iterative process and its two main components are candidate elements generation and

repeated elements generation. In each search of database, mapper generates native candidates and reducer sums up the

native counting and generates repeated elements. The Count Distribution [See Section 4.1] parallel version of Apriori is

best suited on Hadoop where as to implement Data Distribution [See Section 4.2] algorithm we have to control the

distribution of feature which is automatically controlled by Hadoop [20].

The first step of the algorithm is to generate repeated 1-elements L1 which is illustrated in Figure 3 by an example.

HDFS breaks the operational database into blocks and distribute to all mappers running on machines. Each operation is

translated into (key, value) pair, where key is the TID and value is the list of elements i.e. operation. Mapper reads an

operation at any given time and produces an output (key', value') pair where key' is each element in operation and value'

is 1. The combiner combines the pairs with same key' and makes the native sum of the values for each key'. The output

pairs of all combiners are shuffled and exchanged to make the list of values related with same key', as (key', list (value'))

pairs.

Reducers take these pairs and sum up the values of respective keys. Reducers output (key', value') pairs where key'

is element and value' is the support count least support, of that element [21 - 23]. Finally, repeated 1-elements L1 is

obtained by merging the output of all reducers. To generate repeated k-elements Lk, each mapper reads repeated

elements Lk-1 from previous iteration and generates candidate elements Ck from Lk-1 as in traditional algorithm. A

Figure 3. Generation of Frequent 1-Itemsets.

candidate element collection in Ck is selected as key and assigned a value 1, if it is present in the operation assigned to

the mapper. Now we have (key, value) pairs where key is k-elements and value is 1. All the remaining procedures is

same as generation of L1.

© 2018 JETIR March 2018, Volume 5, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1803181 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 959

3.3 Direct Hashing with Efficient Pruning (DHP) Algorithm

Park et al. [4] proposed an effective hash-based algorithm for mining association rules, called Direct Hashing with

Efficient Pruning. Like Apriori, DHP as well produces candidate k-elements from Lk-1. But, it consists of a hash table,

which is constructed in the earlier iteration, to examine the suitability of a k-elements. For all k-elements from Lk-1 * Lk-

1 to Ck, it augments a k-elements to Ck on a condition that k-elements is hashed to a hash access whose value is larger

than or identical to the least operation support needed. By doing this, the candidate collection Ck has considerably

amount of size. Such a cleaning method is mainly influential in decreasing the dimension of C2. It also minimizes the

database dimensions gradually by not only pruning every individual operation dimensions as well as trimming the

amount of operations in the database.

Notice that either DHP or Apriori are recursive procedures on the huge elements dimensions in the logic that the

huge k-elements are resulting from the huge (k-1)-elements. These huge elements counting methods are in fact

appropriate to handle with other feature extraction issues [7 - 8].

3.4 Frequent Pattern (FP) Growth Algorithm

Han et al. [9] presented a new algorithm for mining frequent pattern without candidate generation, called FP-

Growth. FP-Growth calculation utilizes a tree structure called FP-tree [6]. There are two techniques to go over the FP-

tree to remove the rehashed grouping of components which will be utilized to create the reliance rules.

3.4.1 Construction of the tree structure

The creation of the FP-tree needs two searches of the operation databases. The initial search stores the support of

every element and then picks elements that fulfil least support, i.e. repeated 1-elements. The supports of the

descendants of every element are also stored. These elements are arranged based on occurrence in descendant order to

create F-list. The next search builds the FP-tree.

Figure 4. A Transaction Database

Initially, add the descendants of every element in the operation. After that the operations are rearranged based on

the F-list, whereas non-repeated elements are uncovered. Finally, the rearranged operations are injected onto the FP-

tree. In this method insert fp-tree, if the node conforming to the elements in operation be present the counting of the

node is augmented, or else a fresh node is produced and the sum is combined to one. The identical arrangements of the

elements play vital part for the optimization of the database as mutual prefaces can be shared between lots of

operations. Figure 4 and 5 depicts the FP-tree construction.

Figure 5. Construction of FP-Tree.

3.4.2 Finding Frequent Items

Bottom Up Traversal Method: In Bottom up fp-tree (BU-FPtree) the nodes are traverses beginning from the

smallest repeated element in F-list. Whereas staying at every node, BU-FPtree as well gathers the affix trail of the node,

which is the collection of elements on the trail from the suffix node to the root of the tree. BU-FPtree similarly keeps

the value on the node as the count of the affix trail. The affix trail produced is so called restricted sequence of element

of that element. A small database of repeated sequence of elements that co-occur with the element is called the

restricted sequence of element. After that BU-FPtree construct a small fp-tree from the restricted sequence of element

called restricted fp-tree. Throughout every pass, a fresh repeated element is produced by augmenting the suffix to the

elements from the preceding pass. BU-FPtree also take care of a list of descendants anc-list for the elements in the

present element.

© 2018 JETIR March 2018, Volume 5, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1803181 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 959

When BU-FPtree come upon such situations, the pass is stopped and BU-FPtree go for the ensuing element. The

procedure is recursively repeated till no restricted sequence of element can be produced and all repeated sequence of

elements that contain the element are determined.

Top-Down Traversal Method: The Top-down algorithm is stimulated by algorithms Top-Down FP-tree(TD-

FPtree) [10]. The benefit of using this technique is no necessity to build the restricted sequence of element and the sub-

trees. The cleaning techniques alike with Bottom-Up FP-tree are as well hired to evade the redundant searching of

elements which happen with their descendants.

TD-FPtree removes the generation of restricted sequence of element by straight re-joining the node relations of the

fp-tree. At the time of re-joining, TD-FPtree as well adjusts the value information in the fp-tree nodes. For every

different suffix extension lead, for example y, a different header table H-y is build, where H represent Header table and

y represents path from the node to the root node. The header table comprises of elements earlier to the element y in the

preceding header table. After that going with the node links of y, the affix trail to the root node are searched. While

traversing the fp-tree, the node links of the fp-tree nodes are re-joined to header table H-y. The values in header table

and in the fp-tree node are as well improved comparative to its co-occurrences with y. This procedure is recursively

repeated.

3.5 Frequent Items Ultrametric Tree

The FP-growth consists of three major features: (1) It consists the fp-tree, which is typically lesser than the original

databases, therefore is storage proficient. (2) It executes a sequence of element growing technique to evade the

expensive candidate producing step by merging repeated elements in the fp-tree. (3) a partitioned-based divide-and-

conquer finding method is suggested in extracting repeated elements. Nevertheless, the blockage of FP-growth is the

lessening of searching and building expense of the fp-tree and its restricted fp-trees. Therefore, the two main drawbacks

of the FP-growth are, Initial, it is not possible to construct a main-memory based FP-tree if the database is huge and

large. In addition, its requirement is to build a restricted sequence of element and restricted sub-fp-trees for individually

smaller sequence of element. In order to traverse for lengthier sequence of elements, the gaining of outcomes is very

period and space taking processes as the amount of iteration and sequence of elements rises.

Tsay et al. [11] proposed a novel approach for mining frequent itemsets, Frequent Items Ultrametric Tree (FIUT).

The FIUT technique works on well-organized ultrametric tree format, also called as the FIU tree, to show repeated

elements for extracting repeated elements. The suggested FIUT contains two important stages in two searches of

database D. Stage 1 starts by calculating the support for all elements that occur in the operation records. Then, a

trimming method is developed to eliminate all non-repeated elements; departure only repeated elements to produce the

k-elements, where the amount of repeated elements of a operation is k in a database. In the meantime, all the repeated

1-elements are produced. Stage 2 is the iterative building of shorter ultrametric trees, the real extracting of these trees,

and their issue. The method for extracting repeated k-elements, as recommended in this paper, primary construct an

independent, comparative k-FIU-tree for all k-elements, where k from M down to 2, and M represents the huge value of

k amongst the operations in the database. Then, every tree is extracted independently, without producing candidate k-

elements. The k-FIU-tree is removed effectively after repeated k-elements are extracted. Only one k-FIU-tree will be

there in the main memory at any given time.

4. PARALLEL MINING ALGORITHMS

Sequential FIM techniques undergoes from performance degradation when it is applied on massive amount of data

on a single machine. To deal with this issue parallel FIM techniques are used for extraction of repeated elements.

Therefore, different parallel algorithms for extraction of interdependence rules are discussed below and the issue of

extracting interdependence rule is considered on a shared nothing multiprocessor.

4.1 Count Distribution

Agrawal et al. [12] presented a parallel mining algorithm. They have proposed three algorithms (Count Distribution,

Data Distribution, and Candidate Distribution) for parallel mining of association rules. Count Distribution procedure

uses a basic norm of letting redundant computations in parallel otherwise idle CPUs to avoid communication. The

primary step is distinctive. For every other step k-1, the procedure functions as below:

1. Every CPU Pi produces the whole Ck, using the whole repeated elements Lk-1 produced at the end of step k-1.

Note that ever since every CPU has the same Lk-1, they will be producing alike Ck.

2. CPU Pi take a step above its feature dividing (Di) and grows native support count for candidates in Ck.

3. CPU Pi interchanges native Ck count with all other CPUs to produce global Ck count. CPUs are required to

coordinate in this step.

4. Each CPU Pi now calculates Lk from Ck.

© 2018 JETIR March 2018, Volume 5, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1803181 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 959

Figure 5. Overview of Count Distribution Algorithm.

5. Each CPU Pi individually take a choice to dismiss or continue to the next step. The choice will be same as the

CPUs all have equal Lk.

In the initial pass, every CPU Pi with dynamism produces its native candidate elements Ci based on the elements

essentially exists in its native feature fragments Di. Therefore, the candidates calculated by dissimilar CPUs might not

be equal and attention must have been occupied in swapping the native counts to decide global C1.

Therefore, in all step, CPUs can search for the native feature asynchronously in a parallel manner. But, they need to

coordinate at the completion of every step to produce over-all count.

 4.2 Data Distribution

The striking characteristic of the Count Distribution procedure is that no feature tuples are replaced amongst CPUs,

only counts are replaced. Therefore, CPUs can work individually and asynchronously and analyses the features in the

database. On the other hand, the drawback is that this algorithm does not abuse the cumulative storage of the systems

proficiently. Assume that individual CPU consumes storage of M. The amount of candidates that can be calculated in

single step is calculated by M. As we grow the amount of CPUs from 1 to N, the computer have N x M overall storage,

but still we can calculate the identical amount of candidates in single step, as individual CPU is including equal

candidates. The Count Distribution procedure count no further candidates per step than the sequential procedure.

The Data Distribution procedure [12] is aimed to achieve better the entire systems storage as the amount of CPUs

grow. In this particular process, individual CPU count commonly candidates. Therefore, as the number of CPUs grows,

a more amount of candidates can be calculated in a step. On an N-CPU arrangement, feature will be allowed to sum in a

one-step a candidate collection but Count Distribution would need N steps. The problem of this procedure is that each

CPU must forecast its native feature to another CPUs in each step. Thus, this procedure can grow into worthwhile only

on a device with actually fast messaging.

Pass 1: Identical as the Count Distribution algorithm.

Pass k-1:

1. CPU Pi produces Ck from Lk-1. It recollects merely 1/Nth of the elements making the candidates sub-class Ck that

it will sum. Which 1/N elements are reserved is calculated by the CPU ID and can be calculated deprived of

interactivity with another CPUs.

2. CPU Pi grows support values for the elements in its native candidate collection Ck using native feature page as

well as feature page obtained from another CPUs.

3. At the end of the above step, every CPU Pi computes Lk using the native Ck. Once more, all Lk collections are

separate, and the combination of all Lk collections is Lk.

4. CPUs rearrange Lk accordingly to each CPU has the whole Lk for producing Ck+1 for the next step. This phase

needs CPUs to coordinate. After obtaining the whole Lk, individual CPU can individually choose whether to

dismiss or remain on to the next step.

© 2018 JETIR March 2018, Volume 5, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1803181 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 959

The exciting phase is Step 2 in which CPUs grows the support values for native candidates Ck asynchronously. For

the duration of this step, CPUs are forecasting their native feature in addition to getting the native feature of another

CPUs. We need to be suspicious to evade network traffic and use non-synchronous messages to overlap messages time

with the calculating of support. Complete description is given in [16].

4.3 Candidate Distribution

One restriction of Count Distribution as well as Data Distribution algorithm is that as any databases operation might

maintain any candidate elements, individual operation need to be matched alongside the whole candidate collection.

This is what necessitates count to replicate the candidate collection on each CPU and feature to forecast each databases

operation. Moreover, Count Distribution as well as Data Distribution algorithms needs CPUs to coordinate at the end of

every step to interchange values or repeated elements correspondingly. If the amount of work is not seamlessly

balanced, this can be a problem to all the CPUs to wait for either CPU completes last in each step. These issues are

because of the point that neither Count nor Data Distribution exploits issue related information; feature tuples and

candidate elements are divided simply to evenly partition the load. All CPUs need to be referred and all knowledge

collected beforehand they can be used to the subsequent step.

The Candidate Distribution [12] procedure tries to do away with this reliance by dividing the feature as well as the

candidates in such a manner that individual CPU might well execute independently. In step 1, this procedure splits the

repeated elements Lk-1 among CPUs in a manner that a CPU P' can produce a distinctive Ck, not dependent of all

another CPUs. Meanwhile, feature is re-partitioned so as to a CPU can sum the candidates in Ck not dependent of all

another CPU. Notice that upon resting on the excellence of the elements dividing, fragments of the databases might

have to be duplicated on numerous CPUs. The elements dividing procedure contemplates this feature by recognizing

parts of Lk-1 that are probably maintained by dissimilar databases operations. The option of the relocation step is a

compromise amongst decoupled CPU dependency the moment possible and waiting till the elements turn out to be

more simply and fairly partitionable.

Afterward this Candidate Distribution, individual CPU proceed independently, counts only its parts of the global

candidate collection by means of only native feature. No messaging of values or feature tuple is eternally needed. The

only requirement a CPU has on another CPUs is for trimming the native candidate collection throughout the trim phase

of candidate production. Nevertheless, this data is send non-synchronously, and computers do not wait for the whole

trimming data to reach from all another CPUs. For the duration of the trim phase of candidate production, it trims the

candidate collection as much as probable by means of whatever data has reached, and resourcefully begins calculating

the candidates. Then later trimming data can instead be used in succeeding steps [12].

4.4 PFP: Parallel FP-Growth

Li et al. [17] proposes a parallel FP-growth algorithm for query recommendation, they have called it PFP (Parallel

FP-growth). Assumed an operation database, PFP works on three Map Reduce jobs to parallelize FP-Growth.

Following are the phases used in PFP.

Stages of PFP:

Stage 1: Sharding: Partitioning database into consecutive fragments and putting away the fragments on P dissimilar

PCs. Such a splitting and distribution of feature is known Sharding, and every fragment is known as a shard.

Stage 2: Parallel Counting: Performing a Map Reduce job to calculate the support count of every elements that

occur in database. Individual mapper reads one piece of database. This phase indirectly determines the elements

vocabulary I, which is typically unidentified for a massive database. The outcome is kept in F-list.

Stage 3: Gathering Items: Partitioning completely the components of F-List to Q-gatherings. The rundown of

gathering is named gathering list (G-list), where each gathering has an unmistakable gathering id (gid). According to F-

rundown and G-list are both minor and the running time is O(I), this stage can complete on one machine in little

moments.

Stage 4: Parallel FP-Growth: The crucial phase of PFP. In this stage, PFP works on single Map Reduce job, where

the map instance and reduce instance do dissimilar vital purposes.

Mapper - Producing group dependent operations: Every mapper job takes a piece of database produced in phase 1.

Beforehand it computes operations in the piece one at a time, it analyses the G-list. With the mapper procedure it yields

one or extra key value pair, where every key is a group-id and its equivalent value is a produced group-dependent

operation.

Reducer - FP-Growth on group-dependent pieces: When every mapper instance has completed their function, for

every group-id, the Map Reduce infrastructure routinely collects all equivalent group-dependent operations to a piece of

group-dependent operations. Every reducer job is allotted to process one or extra group-dependent piece one at a time.

For every piece, the reducer job forms a native fp-tree and its restricted fp-trees iteratively. Throughout the iterative

procedure, it might have output a determined sequence of elements.

© 2018 JETIR March 2018, Volume 5, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1803181 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 959

Stage 5: Aggregating: Combining the outcomes produced in Phase 4 as our last outcome.

4.5 BPFP: Balanced Parallel FP-Growth

Zhou et al. [18] presented a balanced parallel FP-growth (BPFP) with Map Reduce. Assume an operation database

and the least support value, BPFP requires 2 phases of Map Reduce to run FP-Growth in parallel. Associated with PFP,

the two main variations are, first one is the combining phase has a stable approach, which splits the whole extracting

job to a comparatively uniform subclass to increase parallelism. The another is it does not have the “Aggregating”

phase, as its purpose is to determine altogether repeated elements.

Stages of BPFP:

Stage 1: Sharding: Sharding is distributing database to consecutive parts and keeping the parts on P different

computers. When using Hadoop Map Reduce, we impartially require replicating the database into Hadoop Distributed

File System. Hadoop will do the fragmentation.

Stage 2: Parallel Counting: This phase works on one Map Reduce task to calculate every element. One shard of

database is given to each mapper as input. The Input is in the key and value format like (key, value = Ti), where Ti is a

database operation. For every element, say ajTi, the mapper emits a key and value structure (key' = aj, value' = 1). Once

each mapper instance has completed their work, the Reducer calculate the summation of all the counts conforming to

the similar key' and emits (key', sum (value')) pair. The outcome of this phase is the F-List, a list of repeated elements

arranged by occurrence in downward manner.

Stage 3: Balanced Grouping: Balanced Grouping properly splits the elements in the F-List to Q groups, stabilizing

work between entire groups. Such a grouping is to increase parallelism of the entire extracting procedure. Work of the

entire FP-Growth equal to summation of works of sub-FP-Growth, which are FP-Growth on restricted sequence of

element of each repeated elements. Balanced Grouping can be allocated into two stages. The initial stage is calculating

load component, which is the volume of efforts of executing FP-Growth on restricted sequence of element of every

repeated element. The next stage is properly splits entire load component to a numerous group.

Table. 1. Comparing references based on different parameters like automatic parallelization, load
balancing, data mining efficiency, data distribution, scanning the database, storage.

4.5.1 Mining Load Estimation

In the meantime, data presented in this stage is not sufficient for calculating exact load of every element; few

predictions are required to be made. Two predictions are made in this step. Earliest one, amount of recursive

repetitions for the duration of FP-Growth execution on restricted sequence of element of each element is predicted as

load of FP-Growth on restricted sequence of element of each element. The additional one is that every element in F-

List is predicted to be the size of the lengthiest repeated trail in the restricted sequence of element. The amount of

recursive repetitions is exponentially relative with lengthiest repeated trail in the restricted sequence of element.

Predicted load of element i, say Ti, can be calculated by locality of element i in F-List, say Li, as Ti' = log Li.

4.5.2 Balanced Partition

Primarily, entire elements in F-List are organized by load in downward manner, making L-List. Then and there,

References Advantages Disadvantages

Agrawal et al. [3] Sequential mining on dataset,
efficient.

It lacks in load balancing, need
large database for storage,
cannot be used on large
database.

Tsay et al. [11] It requires less storage space for
database, no need to scan the
database again and again for mining,
parallel mining on database.

Lacks in automatic
parallelization and load
balancing.

Han et al. [15] Distribution of data over data nodes,
parallel mining.

Not efficient, require more time
for mining.

Yu et al. [26] Parallel mining on database,
workload balance.

Lack in automatic
parallelization and its expensive
data mining.

Zhou et al. [18] Parallel FP-Growth, use MapReduce
programming model for large
database.

Lacks in load balancing and its
expensive for mining.

© 2018 JETIR March 2018, Volume 5, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1803181 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 959

the anterior Q elements create the primary Q groups, single element for each group. Load of every group is adjusted

with the load of the element it holds. After that, reiterate the subsequent two stages till entire elements in the L-List

are collected:

1. Augment the resulting non-grouped element in L-List to the group with the least load.

2. Rises the load of that group by the load of the novel element.

5. CONCLUSIONS

Researchers in various fields have denoted to the state of the art of the feature extraction [23 - 25]. As a result, it is a

stimulating job to make available a complete summary of the feature extraction approaches in this paper. This paper is

an effort to offer a sensible review, from a researcher’s viewpoint, on the feature extraction methods designed in recent

times.

We have discussed about various repeated sequence of elements extraction algorithms. In repeated sequence of

element extraction, it is recognized that few features of the datasets, for example the closeness, can disturb the selection

of extraction algorithm. This paper gives the overview of algorithms designed for parallel extraction of repeated

elements, and also focuses on each of the algorithms advantages, disadvantages and limitations for finding sequence of

elements among huge database systems.

References

[1] Piateski, Gregory, and William Frawley. Knowledge discovery in databases. MIT press, 1991.

[2] Agrawal, Rakesh, Tomasz Imieliński, and Arun Swami. "Mining association rules between sets of items in large

databases." Acm sigmod record. Vol. 22. No. 2. ACM, 1993.

[3] Agrawal, Rakesh, and Ramakrishnan Srikant. "Fast algorithms for mining association rules." Proc. 20th int. conf.

very large data bases, VLDB. Vol. 1215. 1994.

[4] Park, Jong Soo, Ming-Syan Chen, and Philip S. Yu. An effective hash-based algorithm for mining association rules.

Vol. 24. No. 2. ACM, 1995.

[5] Zaki, Mohammed J. "Parallel and distributed association mining: A survey." IEEE concurrency 7.4 (1999): 14-25.

[6] Pramudiono, Iko, and Masaru Kitsuregawa. "FP-tax: Tree structure based generalized association rule

mining." Proceedings of the 9th ACM SIGMOD workshop on Research issues in data mining and knowledge

discovery. ACM, 2004.

[7] Agrawal, Rakesh, and Ramakrishnan Srikant. "Mining sequential patterns." Data Engineering, 1995. Proceedings of

the Eleventh International Conference on. IEEE, 1995.

[8] Chen, Ming-Syan, Jong Soo Park, and Philip S. Yu. "Data mining for path traversal patterns in a web

environment." Distributed Computing Systems, 1996., Proceedings of the 16th International Conference on. IEEE,

1996.

[9] Han, Jiawei, Jian Pei, and Yiwen Yin. "Mining frequent patterns without candidate generation." ACM sigmod

record. Vol. 29. No. 2. ACM, 2000.

[10] Wang, Ke, et al. "Top down fp-growth for association rule mining." Pacific-Asia Conference on Knowledge

Discovery and Data Mining. Springer, Berlin, Heidelberg, 2002.

[11] Tsay, Yuh-Jiuan, Tain-Jung Hsu, and Jing-Rung Yu. "FIUT: A new method for mining frequent

itemsets." Information Sciences 179.11 (2009): 1724-1737.

[12] Agrawal, Rakesh, and John C. Shafer. "Parallel mining of association rules." IEEE Transactions on knowledge and

Data Engineering 8.6 (1996): 962-969.

[13] Cheung, David W., and Yongqiao Xiao. "Effect of data skewness in parallel mining of association rules." Pacific-

Asia Conference on Knowledge Discovery and Data Mining. Springer, Berlin, Heidelberg, 1998.

[14] Shintani, Takahiko, and Masaru Kitsuregawa. "Hash based parallel algorithms for mining association

rules." Parallel and Distributed Information Systems, 1996., Fourth International Conference on. IEEE, 1996.

[15] Han, Eui-Hong, George Karypis, and Vipin Kumar. Scalable parallel data mining for association rules. Vol. 26.

No. 2. ACM, 1997.

[16] Agrawal, Rakesh, and John C. Shafer. "Parallel mining of association rules." IEEE Transactions on knowledge and

Data Engineering 8.6 (1996): 962-969.

[17] Li, Haoyuan, et al. "Pfp: parallel fp-growth for query recommendation." Proceedings of the 2008 ACM conference

on Recommender systems. ACM, 2008.

[18] Zhou, Le, et al. "Balanced parallel fp-growth with mapreduce." Information Computing and Telecommunications

(YC-ICT), 2010 IEEE Youth Conference on. IEEE, 2010.

[19] Kovacs, Ferenc, and János Illés. "Frequent itemset mining on hadoop." Computational Cybernetics (ICCC), 2013

IEEE 9th International Conference on. IEEE, 2013.

[20] Oruganti, Shravanth, Qin Ding, and Nasseh Tabrizi. "Exploring Hadoop as a platform for distributed association

rule mining." FUTURE COMPUTING 2013 the Fifth International Conference on Future Computational

Technologies and Applications. 2013.

[21] Lin, Ming-Yen, Pei-Yu Lee, and Sue-Chen Hsueh. "Apriori-based frequent itemset mining algorithms on

MapReduce." Proceedings of the 6th international conference on ubiquitous information management and

communication. ACM, 2012.

© 2018 JETIR March 2018, Volume 5, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1803181 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 959

[22] Li, Ning, et al. "Parallel implementation of apriori algorithm based on mapreduce." Software Engineering,

Artificial Intelligence, Networking and Parallel & Distributed Computing (SNPD), 2012 13th ACIS International

Conference on. IEEE, 2012.

[23] Li, Lingjuan, and Min Zhang. "The strategy of mining association rule based on cloud computing." Business

Computing and Global Informatization (BCGIN), 2011 International Conference on. IEEE, 2011.

[24] Fayyad, Usama, Gregory Piatetsky-Shapiro, and Padhraic Smyth. "From data mining to knowledge discovery in

databases." AI magazine 17.3 (1996): 37.

[25] Piatetsky-Shapiro, Gregory. "Discovery, analysis, and presentation of strong rules." Knowledge discovery in

databases (1991): 229-238.

[26] Yu, Kun-Ming, et al. "A load-balanced distributed parallel mining algorithm." Expert Systems with

Applications 37.3 (2010): 2459-2464.

