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Abstract:  Feature extraction have been commonly recognized as a dominant method to discover additional information 

from huge scale database. One of the feature extraction method is general interdependence rules extraction through 

grouping. This method is used to determine extra valuable information other than normal regular interdependence rules by 

taking user related knowledge into consideration. Frequent Itemset Mining (FIM) play a fundamental role in 

interdependence rule elements extraction, so as to serve in various feature extraction jobs. It supports to recognize 

collection of elements, features, signs etc. that usually occur in our databases. Ever since its beginning, a numeral important 

frequent item sets mining algorithm has been established to accelerate extraction performance. In this paper, we have 

discussed different algorithms for both sequential extraction as well as parallel extraction of repeated elements. So different 

algorithms to do have a variety of compromises among communication and computation, utilization of memory, 

synchronization, and the consumption of problem specific knowledge. 

 

Index Terms - Information Mining, Association Rules, Frequent Itemset Mining, Hadoop Map Reduce 

___________________________________________________________________________________________________ 

1. INTRODUCTION 

Extraction of hidden knowledge is a method of mining earlier unknown and possibly valuable knowledge (for 

example information rule, limitations, symmetries) from databases [1]. Through information determining in databases, 

relevant information, sequence of elements, or complex knowledge can be mined from important collections of 

databases. This information then can be examined from variety of viewpoints. Therefore, huge databases can be 

considered as ironic and consistent bases for information production and confirmation. 

 

Extraction of knowledge and information from huge database has been identified by numerous scholars as a crucial 

topic in database systems and machine learning. Several business companies have been using extraction methods as a 

vital field with a chance of main revenues. The determined data can be used for data management, question processing, 

decision support system, procedure controller, and numerous further areas. Scholars in various dissimilar areas, 

containing database systems, information system, artificial intelligence, machine learning, and information gaining 

have revealed great curiosity in feature extraction. 

2. BACKGROUND 

2.1 Mining Association Rules 

Consider an example of auctions transaction database. It is required to determine the vital interdependences 

amongst the elements such that the occurrence of few elements in an operation will indicate the occurrence of another 

elements in the similar operation. A scientific prototype was suggested in [2] to discuss the issues of extracting 

interdependence rules. Consider I = i1; i2; . . .. im be a collection of literal, called as elements. Let D be a collection of 

operations, where every operation T is a collection of elements such as T ⊂ I. Notice that the number of elements 

bought by a customer in an operation are not well thought-out, it means that every element is a twofold variable 

denoting if an element was purchased. Every operation is related with an identifier, representing as TID. Consider X be a 

collection of elements. An operation T is said to have X as long as X is a subset of T. An interdependence rules is an 

inference of the structure such as X => Y, where X ∈ I, Y ∈ I, and X ∩ Y = Φ. The rules X => Y hold in the operation 

collection D with confidence c if C% of operations in D that have X also have Y. The rules X => Y have support s in 

the operation collection D if S% of operations in D have X ∪ Y.  

 

As per [2 - 4], the difficulty of extraction of interdependence rule is disintegrated into the succeeding two stages: 

1. Determine the huge elements, i.e., the collections of elements that contain operation support beyond a 

predefined least support s. 

2. Use of the huge elements to produce the interdependence rule for the databases. 

 

2.2 Frequent Itemset Mining 

Repeated elements extraction is an essential problem in association rule mining (ARM), sequence extraction, and 

alike. Accelerating the method of frequent itemset mining (FIM) is serious and essential, since FIM feeding accounts 

for a major portion of extraction time because of its high calculation and input/output (I/O) intensity. Repeated 

elements extraction algorithms can be distributed into two groups namely, sequential extraction and parallel extraction. 
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3. SEENTILA MINING ALGORITHMS 

There are two kinds of techniques that can be used for the extraction of repeated elements. First technique is based 

on producing the candidate elements. The examples of this technique include the Apriori algorithm and Direct Hashing 

with Efficient Pruning (DHP) algorithm. Second technique is based on without producing the candidate elements, 

which includes the FP-growth algorithm and frequent items ultrametric tree (FUIT). The following section gives a 

description on each of the techniques. 

3.1 Apriori Algorithm 

Agrawal et al. [3] proposed a fast algorithm for mining association rules in large databases, known as Apriori 

algorithm. Take an example of operation databases as shown in Figure 1. In every step, Apriori builds a candidate 

collection of huge elements, sums the amount of incidents of each candidate elements, and then calculates huge 

elements founded on a predefined least support. In the initial step, Apriori only searches all the operations to calculate 

the amount of incidents for every element. The collection of candidate 1-elements, C1, found is presented in Figure 2. 

Figure 1. A Transaction Database. 

 

  Suppose that the least operation support needed is 2 (such as, s = 40%). The collection of huge 1-elements, L1, 

consists of candidate 1-elements with the least support mandatory, can then be calculated. To determine the collection 

of huge 2-elements, in sight of the point that any subclass of a huge elements essential have least support, Apriori 

algorithm requires L1 * L1 to produce a candidate collection of elements C2 where * is an action for concatenation in 

this situation. C2 contains of 2-elements. Then, the four operations in D are searched and the support of every candidate 

elements in C2 is calculated. The second row of mid table in Figure 2 denotes the outcome from such calculating in C2. 

The collection of huge 2-elements, L2, is consequently calculated which relies on the support of every candidate 2-

elements in C2. 

 

The collection of candidate elements, C3, is produced from L2 as below. From L2, two huge 2-elements with the 

similar first element, such as (BC) and (BE), are recognized first. After that, Apriori checks whether the 2-elements 

(CE), which contains of their next elements, creates a huge 2-elements or not. As (CE) is a huge element by its-own, we 

see that all the subclasses of (BCE) are huge and then (BCE) converts to a candidate 3-elements. There is no other 

candidate 3-elements from L2. Then Apriori searches all the operations and identify the huge 3-elements L3 in Figure 2. 

As close by, there is no candidate 4-elements to be created from L3, Apriori stops the procedure of determining huge 

elements. 

Figure 2. Candidate Set Generation in Apriori. 

 

The Apriori Algorithm has a decent performance increased by minimizing the dimension of candidate collections. 

But, in circumstances with a huge amount of repeated sequence of elements, long sequence of elements, or pretty low 

least support, an Apriori-like algorithm may have the subsequent two nontrivial expenses: 

1. It is expensive to support a large amount of candidate collections. For instance, if there are 104 repeated 1- 
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elements, the Apriori algorithm will require generating greater than 107 length 2-candidates. Then it needs to 

gather and checks their occurring regularities. Furthermore, to determine a repeated sequence of element of size 

100, such as a1, . . ., a100, it needs to produce 2100 -2= 1030 candidates in overall. This is the natural cost for 

candidate production, it does not matter what execution method is used.  

2. It is boring to constantly search the databases and test a huge collection of candidates by sequence of element 

comparing, which is particularly right for extraction of large sequence of elements. 

 

3.2 Apriori on Hadoop MapReduce 

Kovacs et al. [19] presented parallel frequent itemset mining on hadoop. Hadoop is a framework which uses the 

MapReduce programming. To implement an algorithm on MapReduce the main tasks are to design two independent 

maps and reduce functions for the algorithm and to convert the datasets in the structure of the form (key, value) pairs. 

In MapReduce programming, all the mapper and reducer on different machines execute in parallel fashion but the final 

result is obtained only after the completion of reducer. If algorithm is recursive, then we have to execute multiple phase 

of map-reduce to get the final result. 

 

Apriori algorithm is an iterative process and its two main components are candidate elements generation and 

repeated elements generation. In each search of database, mapper generates native candidates and reducer sums up the 

native counting and generates repeated elements. The Count Distribution [See Section 4.1] parallel version of Apriori is 

best suited on Hadoop where as to implement Data Distribution [See Section 4.2] algorithm we have to control the 

distribution of feature which is automatically controlled by Hadoop [20]. 

 

The first step of the algorithm is to generate repeated 1-elements L1 which is illustrated in Figure 3 by an example. 

HDFS breaks the operational database into blocks and distribute to all mappers running on machines. Each operation is 

translated into (key, value) pair, where key is the TID and value is the list of elements i.e. operation. Mapper reads an 

operation at any given time and produces an output (key', value') pair where key' is each element in operation and value' 

is 1. The combiner combines the pairs with same key' and makes the native sum of the values for each key'. The output 

pairs of all combiners are shuffled and exchanged to make the list of values related with same key', as (key', list (value')) 

pairs. 

 

Reducers take these pairs and sum up the values of respective keys. Reducers output (key', value') pairs where key' 

is element and value' is the support count least support, of that element [21 - 23]. Finally, repeated 1-elements L1 is 

obtained by merging the output of all reducers. To generate repeated k-elements Lk, each mapper reads repeated 

elements Lk-1 from previous iteration and generates candidate elements Ck from Lk-1 as in traditional algorithm. A           

Figure 3. Generation of Frequent 1-Itemsets. 

 

candidate element collection in Ck is selected as key and assigned a value 1, if it is present in the operation assigned to 

the mapper. Now we have (key, value) pairs where key is k-elements and value is 1. All the remaining procedures is 

same as generation of L1. 
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3.3 Direct Hashing with Efficient Pruning (DHP) Algorithm 

Park et al. [4] proposed an effective hash-based algorithm for mining association rules, called Direct Hashing with 

Efficient Pruning. Like Apriori, DHP as well produces candidate k-elements from Lk-1. But, it consists of a hash table, 

which is constructed in the earlier iteration, to examine the suitability of a k-elements. For all k-elements from Lk-1 * Lk-

1 to Ck, it augments a k-elements to Ck on a condition that k-elements is hashed to a hash access whose value is larger 

than or identical to the least operation support needed. By doing this, the candidate collection Ck has considerably 

amount of size. Such a cleaning method is mainly influential in decreasing the dimension of C2. It also minimizes the 

database dimensions gradually by not only pruning every individual operation dimensions as well as trimming the 

amount of operations in the database. 

 

Notice that either DHP or Apriori are recursive procedures on the huge elements dimensions in the logic that the 

huge k-elements are resulting from the huge (k-1)-elements. These huge elements counting methods are in fact 

appropriate to handle with other feature extraction issues [7 - 8]. 

3.4 Frequent Pattern (FP) Growth Algorithm 

Han et al. [9] presented a new algorithm for mining frequent pattern without candidate generation, called FP-

Growth. FP-Growth calculation utilizes a tree structure called FP-tree [6]. There are two techniques to go over the FP-

tree to remove the rehashed grouping of components which will be utilized to create the reliance rules. 

 

3.4.1 Construction of the tree structure 

The creation of the FP-tree needs two searches of the operation databases. The initial search stores the support of 

every element and then picks elements that fulfil least support, i.e. repeated 1-elements. The supports of the 

descendants of every element are also stored. These elements are arranged based on occurrence in descendant order to 

create F-list. The next search builds the FP-tree. 

Figure 4. A Transaction Database 

 

Initially, add the descendants of every element in the operation. After that the operations are rearranged based on 

the F-list, whereas non-repeated elements are uncovered. Finally, the rearranged operations are injected onto the FP-

tree. In this method insert fp-tree, if the node conforming to the elements in operation be present the counting of the  

node is augmented, or else a fresh node is produced and the sum is combined to one. The identical arrangements of the 

elements play vital part for the optimization of the database as mutual prefaces can be shared between lots of 

operations. Figure 4 and 5 depicts the FP-tree construction. 

Figure 5. Construction of FP-Tree. 

 

3.4.2 Finding Frequent Items 

Bottom Up Traversal Method: In Bottom up fp-tree (BU-FPtree) the nodes are traverses beginning from the 

smallest repeated element in F-list. Whereas staying at every node, BU-FPtree as well gathers the affix trail of the node, 

which is the collection of elements on the trail from the suffix node to the root of the tree. BU-FPtree similarly keeps 

the value on the node as the count of the affix trail. The affix trail produced is so called restricted sequence of element 

of that element. A small database of repeated sequence of elements that co-occur with the element is called the 

restricted sequence of element. After that BU-FPtree construct a small fp-tree from the restricted sequence of element 

called restricted fp-tree. Throughout every pass, a fresh repeated element is produced by augmenting the suffix to the 

elements from the preceding pass. BU-FPtree also take care of a list of descendants anc-list for the elements in the 

present element.      
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When BU-FPtree come upon such situations, the pass is stopped and BU-FPtree go for the ensuing element. The 

procedure is recursively repeated till no restricted sequence of element can be produced and all repeated sequence of 

elements that contain the element are determined. 

 

Top-Down Traversal Method: The Top-down algorithm is stimulated by algorithms Top-Down FP-tree(TD-

FPtree) [10]. The benefit of using this technique is no necessity to build the restricted sequence of element and the sub-

trees. The cleaning techniques alike with Bottom-Up FP-tree are as well hired to evade the redundant searching of 

elements which happen with their descendants. 

 

TD-FPtree removes the generation of restricted sequence of element by straight re-joining the node relations of the 

fp-tree. At the time of re-joining, TD-FPtree as well adjusts the value information in the fp-tree nodes. For every 

different suffix extension lead, for example y, a different header table H-y is build, where H represent Header table and 

y represents path from the node to the root node. The header table comprises of elements earlier to the element y in the 

preceding header table. After that going with the node links of y, the affix trail to the root node are searched. While 

traversing the fp-tree, the node links of the fp-tree nodes are re-joined to header table H-y. The values in header table 

and in the fp-tree node are as well improved comparative to its co-occurrences with y. This procedure is recursively 

repeated. 

3.5 Frequent Items Ultrametric Tree 

The FP-growth consists of three major features: (1) It consists the fp-tree, which is typically lesser than the original 

databases, therefore is storage proficient. (2) It executes a sequence of element growing technique to evade the 

expensive candidate producing step by merging repeated elements in the fp-tree. (3) a partitioned-based divide-and-

conquer finding method is suggested in extracting repeated elements. Nevertheless, the blockage of FP-growth is the 

lessening of searching and building expense of the fp-tree and its restricted fp-trees. Therefore, the two main drawbacks 

of the FP-growth are, Initial, it is not possible to construct a main-memory based FP-tree if the database is huge and 

large. In addition, its requirement is to build a restricted sequence of element and restricted sub-fp-trees for individually 

smaller sequence of element. In order to traverse for lengthier sequence of elements, the gaining of outcomes is very 

period and space taking processes as the amount of iteration and sequence of elements rises. 

 

Tsay et al. [11] proposed a novel approach for mining frequent itemsets, Frequent Items Ultrametric Tree (FIUT). 

The FIUT technique works on well-organized ultrametric tree format, also called as the FIU tree, to show repeated 

elements for extracting repeated elements. The suggested FIUT contains two important stages in two searches of 

database D. Stage 1 starts by calculating the support for all elements that occur in the operation records. Then, a 

trimming method is developed to eliminate all non-repeated elements; departure only repeated elements to produce the 

k-elements, where the amount of repeated elements of a operation is k in a database. In the meantime, all the repeated 

1-elements are produced. Stage 2 is the iterative building of shorter ultrametric trees, the real extracting of these trees, 

and their issue. The method for extracting repeated k-elements, as recommended in this paper, primary construct an 

independent, comparative k-FIU-tree for all k-elements, where k from M down to 2, and M represents the huge value of 

k amongst the operations in the database. Then, every tree is extracted independently, without producing candidate k-

elements. The k-FIU-tree is removed effectively after repeated k-elements are extracted. Only one k-FIU-tree will be 

there in the main memory at any given time. 

4. PARALLEL MINING ALGORITHMS 

Sequential FIM techniques undergoes from performance degradation when it is applied on massive amount of data 

on a single machine. To deal with this issue parallel FIM techniques are used for extraction of repeated elements. 

Therefore, different parallel algorithms for extraction of interdependence rules are discussed below and the issue of 

extracting interdependence rule is considered on a shared nothing multiprocessor. 

4.1 Count Distribution 

Agrawal et al. [12] presented a parallel mining algorithm. They have proposed three algorithms (Count Distribution, 

Data Distribution, and Candidate Distribution) for parallel mining of association rules. Count Distribution procedure 

uses a basic norm of letting redundant computations in parallel otherwise idle CPUs to avoid communication. The 

primary step is distinctive. For every other step k-1, the procedure functions as below: 

1. Every CPU Pi produces the whole Ck, using the whole repeated elements Lk-1 produced at the end of step k-1. 

Note that ever since every CPU has the same Lk-1, they will be producing alike Ck. 

2. CPU Pi take a step above its feature dividing (Di) and grows native support count for candidates in Ck. 

3. CPU Pi interchanges native Ck count with all other CPUs to produce global Ck count. CPUs are required to 

coordinate in this step. 

4. Each CPU Pi now calculates Lk from Ck. 
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Figure 5.  Overview of Count Distribution Algorithm. 

 

5. Each CPU Pi individually take a choice to dismiss or continue to the next step. The choice will be same as the 

CPUs all have equal Lk. 

      

In the initial pass, every CPU Pi with dynamism produces its native candidate elements Ci based on the elements 

essentially exists in its native feature fragments Di. Therefore, the candidates calculated by dissimilar CPUs might not 

be equal and attention must have been occupied in swapping the native counts to decide global C1. 

 

Therefore, in all step, CPUs can search for the native feature asynchronously in a parallel manner. But, they need to 

coordinate at the completion of every step to produce over-all count. 

 4.2 Data Distribution 

The striking characteristic of the Count Distribution procedure is that no feature tuples are replaced amongst CPUs, 

only counts are replaced. Therefore, CPUs can work individually and asynchronously and analyses the features in the 

database. On the other hand, the drawback is that this algorithm does not abuse the cumulative storage of the systems 

proficiently. Assume that individual CPU consumes storage of M. The amount of candidates that can be calculated in 

single step is calculated by M. As we grow the amount of CPUs from 1 to N, the computer have N x M overall storage, 

but still we can calculate the identical amount of candidates in single step, as individual CPU is including equal 

candidates. The Count Distribution procedure count no further candidates per step than the sequential procedure. 

 

The Data Distribution procedure [12] is aimed to achieve better the entire systems storage as the amount of CPUs 

grow. In this particular process, individual CPU count commonly candidates. Therefore, as the number of CPUs grows, 

a more amount of candidates can be calculated in a step. On an N-CPU arrangement, feature will be allowed to sum in a 

one-step a candidate collection but Count Distribution would need N steps. The problem of this procedure is that each 

CPU must forecast its native feature to another CPUs in each step. Thus, this procedure can grow into worthwhile only 

on a device with actually fast messaging. 

 

Pass 1: Identical as the Count Distribution algorithm.  

Pass k-1: 

1. CPU Pi produces Ck from Lk-1. It recollects merely 1/Nth of the elements making the candidates sub-class Ck that 

it will sum. Which 1/N elements are reserved is calculated by the CPU ID and can be calculated deprived of 

interactivity with another CPUs. 

2. CPU Pi grows support values for the elements in its native candidate collection Ck using native feature page as 

well as feature page obtained from another CPUs. 

3. At the end of the above step, every CPU Pi computes Lk using the native Ck. Once more, all Lk collections are 

separate, and the combination of all Lk collections is Lk. 

4. CPUs rearrange Lk accordingly to each CPU has the whole Lk for producing Ck+1 for the next step. This phase 

needs CPUs to coordinate. After obtaining the whole Lk, individual CPU can individually choose whether to 

dismiss or remain on to the next step. 
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The exciting phase is Step 2 in which CPUs grows the support values for native candidates Ck asynchronously. For 

the duration of this step, CPUs are forecasting their native feature in addition to getting the native feature of another 

CPUs. We need to be suspicious to evade network traffic and use non-synchronous messages to overlap messages time 

with the calculating of support. Complete description is given in [16]. 

4.3 Candidate Distribution 

One restriction of Count Distribution as well as Data Distribution algorithm is that as any databases operation might 

maintain any candidate elements, individual operation need to be matched alongside the whole candidate collection. 

This is what necessitates count to replicate the candidate collection on each CPU and feature to forecast each databases 

operation. Moreover, Count Distribution as well as Data Distribution algorithms needs CPUs to coordinate at the end of 

every step to interchange values or repeated elements correspondingly. If the amount of work is not seamlessly 

balanced, this can be a problem to all the CPUs to wait for either CPU completes last in each step. These issues are 

because of the point that neither Count nor Data Distribution exploits issue related information; feature tuples and 

candidate elements are divided simply to evenly partition the load. All CPUs need to be referred and all knowledge 

collected beforehand they can be used to the subsequent step. 

 

The Candidate Distribution [12] procedure tries to do away with this reliance by dividing the feature as well as the 

candidates in such a manner that individual CPU might well execute independently. In step 1, this procedure splits the 

repeated elements Lk-1 among CPUs in a manner that a CPU P' can produce a distinctive Ck, not dependent of all 

another CPUs. Meanwhile, feature is re-partitioned so as to a CPU can sum the candidates in Ck not dependent of all 

another CPU. Notice that upon resting on the excellence of the elements dividing, fragments of the databases might 

have to be duplicated on numerous CPUs. The elements dividing procedure contemplates this feature by recognizing 

parts of Lk-1 that are probably maintained by dissimilar databases operations. The option of the relocation step is a 

compromise amongst decoupled CPU dependency the moment possible and waiting till the elements turn out to be 

more simply and fairly partitionable. 

 

Afterward this Candidate Distribution, individual CPU proceed independently, counts only its parts of the global 

candidate collection by means of only native feature. No messaging of values or feature tuple is eternally needed. The 

only requirement a CPU has on another CPUs is for trimming the native candidate collection throughout the trim phase 

of candidate production. Nevertheless, this data is send non-synchronously, and computers do not wait for the whole 

trimming data to reach from all another CPUs. For the duration of the trim phase of candidate production, it trims the 

candidate collection as much as probable by means of whatever data has reached, and resourcefully begins calculating 

the candidates. Then later trimming data can instead be used in succeeding steps [12].  

4.4 PFP: Parallel FP-Growth 

Li et al. [17] proposes a parallel FP-growth algorithm for query recommendation, they have called it PFP (Parallel 

FP-growth). Assumed an operation database, PFP works on three Map Reduce jobs to parallelize FP-Growth. 

Following are the phases used in PFP. 

Stages of PFP: 

 

Stage 1: Sharding: Partitioning database into consecutive fragments and putting away the fragments on P dissimilar 

PCs. Such a splitting and distribution of feature is known Sharding, and every fragment is known as a shard. 

 

Stage 2: Parallel Counting: Performing a Map Reduce job to calculate the support count of every elements that 

occur in database. Individual mapper reads one piece of database. This phase indirectly determines the elements 

vocabulary I, which is typically unidentified for a massive database. The outcome is kept in F-list. 

 

Stage 3: Gathering Items: Partitioning completely the components of F-List to Q-gatherings. The rundown of 

gathering is named gathering list (G-list), where each gathering has an unmistakable gathering id (gid). According to F-

rundown and G-list are both minor and the running time is O(I), this stage can complete on one machine in little 

moments. 

 

Stage 4: Parallel FP-Growth: The crucial phase of PFP. In this stage, PFP works on single Map Reduce job, where 

the map instance and reduce instance do dissimilar vital purposes. 

Mapper - Producing group dependent operations: Every mapper job takes a piece of database produced in phase 1. 

Beforehand it computes operations in the piece one at a time, it analyses the G-list. With the mapper procedure it yields 

one or extra key value pair, where every key is a group-id and its equivalent value is a produced group-dependent 

operation. 

Reducer - FP-Growth on group-dependent pieces: When every mapper instance has completed their function, for 

every group-id, the Map Reduce infrastructure routinely collects all equivalent group-dependent operations to a piece of 

group-dependent operations. Every reducer job is allotted to process one or extra group-dependent piece one at a time. 

For every piece, the reducer job forms a native fp-tree and its restricted fp-trees iteratively. Throughout the iterative 

procedure, it might have output a determined sequence of elements. 
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Stage 5: Aggregating: Combining the outcomes produced in Phase 4 as our last outcome. 

4.5 BPFP: Balanced Parallel FP-Growth 

Zhou et al. [18] presented a balanced parallel FP-growth (BPFP) with Map Reduce. Assume an operation database 

and the least support value, BPFP requires 2 phases of Map Reduce to run FP-Growth in parallel. Associated with PFP, 

the two main variations are, first one is the combining phase has a stable approach, which splits the whole extracting 

job to a comparatively uniform subclass to increase parallelism. The another is it does not have the “Aggregating” 

phase, as its purpose is to determine altogether repeated elements. 

Stages of BPFP: 

 

Stage 1: Sharding: Sharding is distributing database to consecutive parts and keeping the parts on P different 

computers. When using Hadoop Map Reduce, we impartially require replicating the database into Hadoop Distributed 

File System. Hadoop will do the fragmentation. 

 

Stage 2: Parallel Counting: This phase works on one Map Reduce task to calculate every element. One shard of 

database is given to each mapper as input. The Input is in the key and value format like (key, value = Ti), where Ti is a 

database operation. For every element, say ajTi, the mapper emits a key and value structure (key' = aj, value' = 1). Once 

each mapper instance has completed their work, the Reducer calculate the summation of all the counts conforming to 

the similar key' and emits (key', sum (value')) pair. The outcome of this phase is the F-List, a list of repeated elements 

arranged by occurrence in downward manner. 

 

Stage 3: Balanced Grouping: Balanced Grouping properly splits the elements in the F-List to Q groups, stabilizing 

work between entire groups. Such a grouping is to increase parallelism of the entire extracting procedure. Work of the 

entire FP-Growth equal to summation of works of sub-FP-Growth, which are FP-Growth on restricted sequence of 

element of each repeated elements. Balanced Grouping can be allocated into two stages. The initial stage is calculating 

load component, which is the volume of efforts of executing FP-Growth on restricted sequence of element of every 

repeated element. The next stage is properly splits entire load component to a numerous group. 

 

Table. 1. Comparing references based on different parameters like automatic parallelization, load 
balancing, data mining efficiency, data distribution, scanning the database, storage. 

 

 

4.5.1 Mining Load Estimation 

In the meantime, data presented in this stage is not sufficient for calculating exact load of every element; few 

predictions are required to be made. Two predictions are made in this step. Earliest one, amount of recursive 

repetitions for the duration of FP-Growth execution on restricted sequence of element of each element is predicted as 

load of FP-Growth on restricted sequence of element of each element. The additional one is that every element in F-

List is predicted to be the size of the lengthiest repeated trail in the restricted sequence of element. The amount of 

recursive repetitions is exponentially relative with lengthiest repeated trail in the restricted sequence of element. 

Predicted load of element i, say Ti, can be calculated by locality of element i in F-List, say Li, as Ti' = log Li. 

 

4.5.2 Balanced Partition 

Primarily, entire elements in F-List are organized by load in downward manner, making L-List. Then and there, 

References Advantages Disadvantages 

Agrawal et al. [3] Sequential mining on dataset, 
efficient. 

It lacks in load balancing, need 
large database for storage, 
cannot be used on large 
database. 

Tsay et al. [11]  It requires less storage space for 
database, no need to scan the 
database again and again for mining, 
parallel mining on database. 

Lacks in automatic 
parallelization and load 
balancing. 

Han et al. [15]  Distribution of data over data nodes, 
parallel mining. 

Not efficient, require more time 
for mining. 

Yu et al.  [26]  Parallel mining on database, 
workload balance. 

Lack in automatic 
parallelization and its expensive 
data mining. 

Zhou et al. [18]  Parallel FP-Growth, use MapReduce 
programming model for large 
database. 

Lacks in load balancing and its 
expensive for mining. 
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the anterior Q elements create the primary Q groups, single element for each group. Load of every group is adjusted 

with the load of the element it holds. After that, reiterate the subsequent two stages till entire elements in the L-List 

are collected: 

1. Augment the resulting non-grouped element in L-List to the group with the least load. 

2. Rises the load of that group by the load of the novel element. 

5. CONCLUSIONS 

Researchers in various fields have denoted to the state of the art of the feature extraction [23 - 25]. As a result, it is a 

stimulating job to make available a complete summary of the feature extraction approaches in this paper. This paper is 

an effort to offer a sensible review, from a researcher’s viewpoint, on the feature extraction methods designed in recent 

times. 

 

We have discussed about various repeated sequence of elements extraction algorithms. In repeated sequence of 

element extraction, it is recognized that few features of the datasets, for example the closeness, can disturb the selection 

of extraction algorithm. This paper gives the overview of algorithms designed for parallel extraction of repeated 

elements, and also focuses on each of the algorithms advantages, disadvantages and limitations for finding sequence of 

elements among huge database systems. 
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